Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(1): 93-96, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134162

RESUMO

We report on the generation of optical vortices with few-cycle pulse durations, 500µJ per pulse, at a repetition rate of 1 kHz. To do so, a 25 fs laser beam at 800 nm is shaped with a helical phase and coupled into a hollow-core fiber filled with argon gas, in which it undergoes self-phase modulation. Then, 5.5 fs long pulses are measured at the output of the fiber using a dispersion-scan setup. To retrieve the spectrally resolved spatial profile and orbital angular momentum (OAM) content of the pulse, we introduce a method based on spatially resolved Fourier-transform spectroscopy. We find that the input OAM is transferred to all frequency components of the post-compressed pulse. The combination of these two information shows that we obtain few-cycle, high-intensity vortex beams with a well-defined OAM, and sufficient energy to drive strong-field processes.

2.
Phys Rev Lett ; 131(6): 066402, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625042

RESUMO

We performed spin-, time- and angle-resolved extreme ultraviolet photoemission spectroscopy of excitons prepared by photoexcitation of inversion-symmetric 2H-WSe_{2} with circularly polarized light. The very short probing depth of XUV photoemission permits selective measurement of photoelectrons originating from the top-most WSe_{2} layer, allowing for direct measurement of hidden spin polarization of bright and momentum-forbidden dark excitons. Our results reveal efficient chiroptical control of bright excitons' hidden spin polarization. Following optical photoexcitation, intervalley scattering between nonequivalent K-K^{'} valleys leads to a decay of bright excitons' hidden spin polarization. Conversely, the ultrafast formation of momentum-forbidden dark excitons acts as a local spin polarization reservoir, which could be used for spin injection in van der Waals heterostructures involving multilayer transition metal dichalcogenides.

3.
Opt Express ; 29(2): 951-960, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726320

RESUMO

Attosecond transient absorption spectroscopy (ATAS) is used to observe photoexcited dynamics with outstanding time resolution. The main experimental challenge of this technique is that high-harmonic generation sources show significant instabilities, resulting in sub-par sensitivity when compared to other techniques. This paper proposes edge-pixel referencing as a means to suppress this noise. Two approaches are introduced: the first is deterministic and uses a correlation analysis, while the second relies on singular value decomposition. Each method is demonstrated and quantified on a noisy measurement taken on WS2 and results in a fivefold increase in sensitivity. The combination of the two methods ensures the fidelity of the procedure and can be implemented on live data collection but also on existing datasets. The results show that edge-referencing methods bring the sensitivity of ATAS near the detector noise floor. An implementation of the post-processing code is provided to the reader.

4.
Phys Rev Lett ; 124(20): 207401, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501089

RESUMO

Excitation of ionic solids with extreme ultraviolet pulses creates localized core-level excitons, which in some cases couple strongly to the lattice. Here, core-level-exciton states of magnesium oxide are studied in the time domain at the Mg L_{2,3} edge with attosecond transient reflectivity spectroscopy. Attosecond pulses trigger the excitation of these short-lived quasiparticles, whose decay is perturbed by time-delayed near-infrared pulses. Combined with a few-state theoretical model, this reveals that the infrared pulse shifts the energy of bright (dipole-allowed) core-level-exciton states as well as induces features arising from dark core-level excitons. We report coherence lifetimes for the two lowest core-level excitons of 2.3±0.2 and 1.6±0.5 fs and show that these are primarily a consequence of strong exciton-phonon coupling, disclosing the drastic influence of structural effects in this ultrafast relaxation process.

5.
Philos Trans A Math Phys Eng Sci ; 377(2145): 20170463, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30929624

RESUMO

Attosecond science opened the door to observing nuclear and electronic dynamics in real time and has begun to expand beyond its traditional grounds. Among several spectroscopic techniques, X-ray transient absorption spectroscopy has become key in understanding matter on ultrafast time scales. In this review, we illustrate the capabilities of this unique tool through a number of iconic experiments. We outline how coherent broadband X-ray radiation, emitted in high-harmonic generation, can be used to follow dynamics in increasingly complex systems. Experiments performed in both molecules and solids are discussed at length, on time scales ranging from attoseconds to picoseconds, and in perturbative or strong-field excitation regimes. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.

6.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30501230

RESUMO

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

7.
Faraday Discuss ; 194: 325-348, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27752675

RESUMO

Measuring the ultrafast dynamics of chiral molecules in the gas phase has been a long standing and challenging quest of molecular physics. The main limitation to reach that goal has been the lack of highly sensitive chiroptical measurement. By enabling chiral discrimination with up to several 10% of sensitivity, photoelectron circular dichroism (PECD) offers a solution to this issue. However, tracking ultrafast processes requires measuring PECD with ultrashort light pulses. Here we compare the PECD obtained with different light sources, from the extreme ultraviolet to the mid-infrared range, leading to different ionization regimes: single-photon, resonance-enhanced multiphoton, above-threshold and tunnel ionization. We use single and multiphoton ionization to probe the ultrafast relaxation of fenchone molecules photoexcited in their first Rydberg states. We show that time-resolved PECD enables revealing dynamics much faster than the population decay of the Rydberg states, demonstrating the high sensitivity of this technique to vibronic relaxation.

8.
Phys Chem Chem Phys ; 18(18): 12696-706, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27095534

RESUMO

Photoelectron circular dichroism (PECD) manifests itself as an intense forward/backward asymmetry in the angular distribution of photoelectrons produced from randomly-oriented enantiomers by photoionization with circularly-polarized light (CPL). As a sensitive probe of both photoionization dynamics and of the chiral molecular potential, PECD attracts much interest especially with the recent performance of related experiments with visible and VUV laser sources. Here we report, by use of quasi-perfect CPL VUV synchrotron radiation and using a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer, new and very accurate values of the corresponding asymmetries on showcase chiral isomers: camphor and fenchone. These data have additionally been normalized to the absolute enantiopurity of the sample as measured by a chromatographic technique. They can therefore be used as benchmarking data for new PECD experiments, as well as for theoretical models. In particular we found, especially for the outermost orbital of both molecules, a good agreement with CMS-Xα PECD modeling over the whole VUV range. We also report a spectacular sensitivity of PECD to isomerism for slow electrons, showing large and opposite asymmetries when comparing R-camphor to R-fenchone (respectively -10% and +16% around 10 eV). In the course of this study, we could also assess the analytical potential of PECD. Indeed, the accuracy of the data we provide are such that limited departure from perfect enantiopurity in the sample we purchased could be detected and estimated in excellent agreement with the analysis performed in parallel via a chromatographic technique, establishing a new standard of accuracy, in the ±1% range, for enantiomeric excess measurement via PECD. The i(2)PEPICO technique allows correlating PECD measurements to specific parent ion masses, which would allow its application to analysis of complex mixtures.

9.
Biomed Opt Express ; 4(6): 852-67, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23761849

RESUMO

In femtosecond laser ophthalmic surgery tissue dissection is achieved by photodisruption based on laser induced optical breakdown. In order to minimize collateral damage to the eye laser surgery systems should be optimized towards the lowest possible energy threshold for photodisruption. However, optical aberrations of the eye and the laser system distort the irradiance distribution from an ideal profile which causes a rise in breakdown threshold energy even if great care is taken to minimize the aberrations of the system during design and alignment. In this study we used a water chamber with an achromatic focusing lens and a scattering sample as eye model and determined breakdown threshold in single pulse plasma transmission loss measurements. Due to aberrations, the precise lower limit for breakdown threshold irradiance in water is still unknown. Here we show that the threshold energy can be substantially reduced when using adaptive optics to improve the irradiance distribution by spatial beam shaping. We found that for initial aberrations with a root-mean-square wave front error of only one third of the wavelength the threshold energy can still be reduced by a factor of three if the aberrations are corrected to the diffraction limit by adaptive optics. The transmitted pulse energy is reduced by 17% at twice the threshold. Furthermore, the gas bubble motions after breakdown for pulse trains at 5 kilohertz repetition rate show a more transverse direction in the corrected case compared to the more spherical distribution without correction. Our results demonstrate how both applied and transmitted pulse energy could be reduced during ophthalmic surgery when correcting for aberrations. As a consequence, the risk of retinal damage by transmitted energy and the extent of collateral damage to the focal volume could be minimized accordingly when using adaptive optics in fs-laser surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...